In LANDMARK : The 2D axialazimuthal Particle-In-Cell benchmark on ExB discharges

01st November 2018 ExB workshop, Princeton University (USA)

Laboratoire de Physique des Plasmas

Thomas Charoy, J-P Bœuf, W. Villafana, A. Tavant, A. Bourdon, P. Chabert thomas.charoy@lpp.polytechnique.fr

> Laboratoire de Physique des Plasmas École polytechnique

I. Why and how ?

II. Benchmark results

I) Why and how ?

Context : Hall effect thruster (HET)

Schematic view of the (z, θ) plane in a HET [1]

- Anomalous transport in the axial direction
- Instability propagation in the azimuthal direction
- 2D PIC simulations of axial-azimuthal directions (z,θ) are rare [1] [2]

[1] Trevor Lafleur, The role of instability-enhanced friction on "anomalous" electron and ion transport in Hall-effect thrusters, Plasma Sources Sci. Technol. 27 (2018) 015003
[2] A. Héron, J. C. Adam, and G. Laval. Study of stationary plasma thrusters using two-dimensional fully kinetic simulations. Phys. Plasmas 11, 295, (2004).

Benchmarking with LPPic

- Recent study on this issue with a code developed by Bœuf and al. [1]
- Need to define a benchmark case to validate 2D PIC codes : see which effects give insights on the physics and which are only numerical ones

➔ Systematic comparison of our code results with the one of the quoted paper and those from W. Villafana (AVIP - CERFACS)

[1] J.P. Bœuf and L.Garrigues, EXB Electron Drift Instability in Hall thrusters : Particle-In-Cell simulations vs. Theory, Phys. Plasmas 25 061204 (2018) 5

Benchmark description

•
$$dt = 5.10^{-12} s$$

- $N_a = 5000$ $N_{part/cell} = 280$

•
$$T_e = 10 \ eV$$

$$T_i = 0,5 \ eV$$

$$N_{load \ balancing} = 30 \ N_a$$

$$N_{subcycling} = 11 \, at$$

- Fixed magnetic field
- Fixed ionization profile
 - No collision

NB : The number of particles per cell is normally 280 but we've seen that for 50, it gives similar results

II) Benchmark results

A) Case J = 400 A/m^2

First insight on azimuthal instabilities

Time evolution of E_{θ} (B_{max} at 0.75 cm)

Azimuthal electric field at $t = 0.050000 \mu s$

2D maps - Azimuthal electric field and ion density

J.P. Bœuf [1]

[1] J.P. Bœuf and L.Garrigues, EXB Electron Drift Instability in Hall thrusters : Particle-In-Cell simulations vs. Theory, Phys. Plasmas 25 061204 (2018)

Temporal evolution of densities

densities at $t = 0.025000 \mu s$

Stationary state reached around t ~ 10 μs

Axial electric field, Ion density & Electron temperature

----: LPPic ----: Bœuf ----: AVIP CERFACS (T_e not shown)

Black dashed line = magnetic field maximum position

Electron energies & temperatures

----- : LPPic ---- : Bœuf

Azimuthal velocity contributions

— : LPPic - - - - : Bœuf

14

A) Where these differences can come from ?

- Temporal averages differents (here, last 160 samples of the simulation i.e. \sim 4 $\mu s)$
- Azimuthal length longer (1,28 cm > 1 cm)
- Ionization model (different randomization : global or local)
- Ionization scattering included or not ?
- Random number generator : necessary to validate on He benchmark [1]

[1] M. Turner, A. Derzsi, Z. Donko, and T. Lafleur, "Simulation benchmarks for low pressure plasmas: capacitive discharges," Phys. Plasmas, vol. 20, no. 1, (2013) 15

B) Electron Cyclotron Drift Instabilities (ECDI)

Variation of current density J

J.P. Bœuf [1]

LPPic ($N_{part/cell} = 50$)

$$\lambda = 2\pi\sqrt{2} \lambda_{De}$$
 with $\lambda_{De} = \sqrt{\frac{\varepsilon_0 T_e}{|q|n_e}}$

[1] J.P. Bœuf and L.Garrigues, EXB Electron Drift Instability in Hall thrusters : Particle-In-Cell simulations vs. Theory, Phys. Plasmas 25 061204 (2018)

Ion trapping (J=400 A/m²)

J.P. Bœuf [1]

LPPic

[1] J.P. Bœuf and L.Garrigues, *EXB Electron Drift Instability in Hall thrusters : Particle-In-Cell simulations vs. Theory*, Phys. Plasmas 25 061204 (2018)

ECDI analysis (J=400 A/m²)

2D FFT of E_{θ} at z = 1 cm

<u>White</u> : dispersion relation for modified ion acoustic approximation [1] <u>Red</u> : growth rate (rescaled) with [1]

Instability wavelength = f(axial position)

• It seems that we get a different wavelength than Bœuf and al. at z = 1cm ($\lambda_{Boeuf} \sim 1 mm$) BUT λ_{Boeuf} was estimated roughly

→ Need to investigate more

[1] Lafleur T, Baalrud S and Chabert P, Theory for the anomalous electron transport in Hall effect thrusters: I. Insights from particle-in-cell simulations Phys. Plasmas 23 – 053502 (2016)

Conclusion

- The preliminary results show a good correspondance for most of the plasma characteristics.
 - ▲ However, it is not enough for a proper benchmarking ! The differences needs to be at least < 5%.</p>
 - Necessary to explicit all the parameters properly (input and post processing tools)
- Maybe more relevant to simplify the cathodic injection and do other parametric verifications (Ionization profiles, ...)
- Instability characteristics need to be investigated more deeply

Thanks for your attention !

Annexes

Case description

A) Ionization & B field profiles

• Fixed ionization profile S :

$$S(x) = S_{max} \cos(\pi \frac{x - x_m}{x_2 - x_1})$$
 for $x_1 \le x \le x_2$

Maximum determined by the value of ${\sf J}$:

$$J = e \int_0^{L_z} S(x) dx = \frac{2}{\pi} (x_2 - x_1) eS_{max}$$

• Fixed magnetic profile B :

$$B(x) = a_k \exp\left(-\frac{(x - x_{Bmax})^2}{2\sigma^2}\right) + b_k$$

<u>No collision module</u>

A) Charge injection & currents

A) Boundary condition for potential

$$\varphi'(x,y) = \varphi(x,y) - \frac{y}{y_{inj}}\overline{\varphi_{inj}}$$

Where :

- φ solution of Poisson : $\Delta \varphi = -\frac{e}{\varepsilon_0}\rho$ (with $\varphi(x,0) = V_a$ and $\varphi(x,L_z) = 0$)
- $\overline{\varphi_{inj}}$ azimutally averaged potential at injection plane : $\overline{\varphi_{inj}} = \frac{1}{L_{\theta}} \int_{0}^{L_{\theta}} \varphi(0, y_{inj})$

Then, $\varphi'(x, y)$ used to compute E.

Stationary state

Current equality

Influence of some parameters

Influence of N_part/cell

If only 50 particles/cell instead of 280

→ Very small changes !

Influence of azimuthal length

